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Correlating sensory attributes to gas chromatography–mass spectrometry
profiles and e-nose responses using partial least

squares regression analysis
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Abstract

Sensory scores for 15 attributes identified in soy sauce aroma by quantitative descriptive analysis were correlated with purge and trap gas
chromatography–mass spectrometry (GC–MS) profiles and electronic nose (e-nose) responses using partial least squares (PLS) regression
analysis. Highly predictive PLS models were obtained for every attribute based on whole GC–MS profiles. However, the predictability has been
greatly improved in the models calculated from 20 selected peaks that showed higher contribution to each attribute in the first PLS analysis.
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ontrarily, except foralcoholicandfishynotes, predictability of PLS models calculated from e-nose responses was poor. The co
etween GC–MS profiles and e-nose responses was unsatisfactory due to high similarity in sensor responses.
2004 Elsevier B.V. All rights reserved.
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. Introduction

In food research and development, quantitative descriptive
ensory analysis has widely been used not only in industry but
n academia since mid 1970s[1]. The basic principle of this

ethod is very similar to that of chromatographic analysis as
chematically shown inFig. 1 [2]. This similarity gives ra-
ional bases for handling obtained sensory data with various
tatistical techniques that have widely been used in analyt-
cal chemistry[3]. In the first step of this sensory method,
y using a well trained panel generally composed of 6–15
embers, all sensory attributes present in food samples are

dentified through sniffing, tasting and intensive discussions
y panel members[4]. This step may correspond to identifi-
ation of peak components in gas or liquid chromatographic
nalysis. In the second step, like quantitative gas chromato-
raphic (GC) or HPLC analysis, each panel member indi-
idually quantifies strengths of every attribute identified in
amples in the preceding step using a category or line scale.

∗ Tel.: +81 48 649 6114; fax: +81 48 649 6114.

Then, scores given for each attribute by panel member
averaged. Thus, the final form of data is expressed in a
dimensional matrix,mattributes× n samples.

Although at present no method can accurately illustrat
composition of sample aroma[5]. At the first step of arom
analysis using GC or GC–mass spectrometry (GC–
aroma components should be extracted and concen
from food matrix since generally concentrations of m
aroma components contained in food are lower than th
tection threshold of detectors. Utilizing volatility and s
ubility in organic solvent, basic natures commonly sha
by aroma components, various extraction and concentr
methods have been developed and applied for analys
food aroma using GC or GC–MS. Among them, simulta
ous distillation-extraction (SDE), dynamic headspace a
ysis or purge and trap method using porous polymer,
solid-phase micro-extraction (SPME) may be the most
ularly used methods in aroma analysis[6].

Electric nose (e-nose), a newly coined name indicatin
attractive and versatile instrument, was initially develo
by combining metal oxide semi-conductor gas sensors i
E-mail address:aishima@chemsensmetrix.com. der to mimic the human olfaction system[7,8]. However, the
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Fig. 1. Schematic presentation for basic principle of descriptive sensory
analysis exemplified by apple juice flavor[1].

detection specificity of such gas sensors for gases or aroma
compounds was rather poor in nature. Generally, output sig-
nals from e-nose have been analyzed by multivariate pattern
recognition techniques, such as principal component analy-
sis (PCA) and linear discriminant analysis (LDA). Various
successful results to classify the sample “aroma” have been
reported since early 1990s[9–12]. However, attempts to cor-
relate e-nose responses to sensory attributes succeeded only
partly [13] but should undoubtedly be very important and
interesting to develop a new application area of this instru-
ment. Further, if e-nose responses and GC–MS profiles could
be statistically correlated each other, analytical results of e-
nose might be interpreted on the basis of GC–MS data or
chemical information.

Since late 1970s, thanks to an emerging new discipline,
chemometrics, in analytical chemistry, sophisticated multi-
variate data analysis techniques have been applied for sets of
matrix data obtained from sensory and/or instrumental anal-
ysis of food samples[14,15]. Especially, pattern recognition
techniques such as PCA, LDA and SIMCA (soft independent
modeling of class analogy) are widely used ones. Further, par-
tial least squares (PLS) regression, currently the most power-
ful multivariate calibration technique, has been recognized as
an indispensable regression technique among analysts work-
ing in spectroscopy, chromatography and sensory sciences
[
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Table 1
Sensory attributes and results of ANOVA

Attribute Description F P

Sweet Sweet note of heated sugar 1.87 0.04
Alcoholic Yeast fermentation note 1.70 0.07
Fruity Sweet fruity note 1.96 0.03
Sour Vinegar like note 1.60 0.09
Fermented Yogurt like note 0.96 0.49
Woody Pine or cedar wood like odor 2.09 0.02
Roasted Roasted cereals 1.88 0.04
Boiled bean Steamed soybean 1.19 0.29
Fishy Rotten fresh water 1.69 0.07
Gargle Iodine gargle 1.35 0.19
Medicinal Medicine like smell 4.22 0.00
Rice bran Green and a little rancid 1.27 0.24
Dusty Dusty or earthy 2.06 0.02
Moldy Odor of molded food 2.37 0.01
Ink Smell of ink 2.15 0.01

beans and wheat through the purely fermented process using
Aspergillusfungi andZygosaccharomycesyeast.

2.2. Sensory evaluation

Quantitative descriptive sensory analysis was applied for
evaluating 14 soy sauce samples using a 15 cm line scale by
a well-trained panel consisted of 12 members at the age of
30–50, 11 females and one male. They were selected based
on their sensitivity for detecting 2-phenylethyl alcohol, ska-
tol, iso-valeric acid,�-undecalactone and cyclotene at their
threshold levels (Daiichi-Yakuhin-Sangyo Co., Tokyo Japan)
and ability to identify aroma properties of these compounds.
Thirty ml of soy sauce was placed in a 180 ml volume of
white china cup covered with a plastic petri dish and was
served to a panelist at a room temperature, ca. 25◦C. Prior
to the quantitative descriptive analysis, 12 panelists had thor-
oughly discussed aroma properties of samples through three
preliminary sessions, each spent 2 h, until all of them had
agreed to use them as the attributes. Then, the quantitative de-
scriptive analysis was performed using 15 sensory attributes
listed in Table 1for all 14 samples randomly divided into
four sessions, each composed of five, five and four samples.
In each session, samples were randomly presented for each
panel to avoid causing a so-called order effect. All samples
w panel
w

2

5 ml
g e
h min
t 30 cm
× ek-
m in
w nax
c rbed
16].
The purpose of this research is to compare the predic

ty of GC–MS profiles and e-nose responses for quantit
escriptive sensory data of soy sauce aroma by applying
egression analysis.

. Materials and methods

.1. Samples

Fourteen deep-colored type soy sauce samples (
ere purchased from a local market in Tokyo. All soy sa
amples were domestic products and produced from
ere evaluated once. Every sample was presented to the
ith a three digit random number.

.3. GC–MS analysis

A 0.5 ml portion of soy sauce sample placed in a 2
lass sample purger was heated at 50◦C for 5 min by a sampl
eater and then purged with He gas at 40 ml/min for 60

o isolate headspace volatiles, that were adsorbed on a
3 mm i.d. Tenax TA column in a Tekmar LSC2000 (T
ar Inc., Cincinnati, OH). It was then dry-purged for 30 m
ith He gas at 40 ml/min to remove water from the Te
olumn. The adsorbed compounds were thermally deso
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at 200◦C for 10 min using He gas at 1 ml/min. Desorbed
compounds were cryofocused at the capillary interface main-
tained at−120◦C with liquid N2 and then automatically
injected on the column by rapidly heating the interface to
220◦C for 2 min.

An HP5971 mass spectrometer connected with an HP5980
gas chromatography (Agilent Technologies, Palo Alto, CA)
was used with a DB–WAX (60 m× 0.25 mm, film thickness:
0.25�m, J&W Scientific Inc., Folsom, CA) fused silica cap-
illary column. The oven temperature was elevated from 50
to 200◦C at 3◦C/min. The flow rate of He used for carrier
gas was 1.0 ml/min. GC–MS was operated with an ionization
voltage at 70 eV and ion source temperature at 180◦C. All
samples were analyzed once. Peak components were identi-
fied by matching their mass spectra with those in the Wiley
Library of MS spectra (Agilent Technologies) and based on
their retention indices. Areas of each peak integrated by an
attached computer were used as variables for statistical anal-
ysis.

2.4. E-nose analysis

A FOX 4000 e-nose from Alpha-MOS (Toulouse, France),
with 18 metal oxide semiconductor gas sensors, was used.
The metal oxide sensors may be either n- or p-type, the former
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Fig. 2. Comparison of sensory profiles composed of average scores of 15
attributes identified in soy sauce aroma.

scores obtained from cross-validation were compared with
scores ordinarily estimated from PLS models. In the cross-
validation, a PLS model is calculated after a group of samples
has been removed and sensory scores are estimated using the
PLS model obtained from the residual samples. Next, a new
group of samples has been removed and a PLS model is cal-
culated using the residual samples. This step is continued
until all samples removed once[18].

3. Results and discussion

3.1. Sensory analysis

Table 1shows 15 attributes identified by the panel for de-
scribing soy sauce aroma and the resulting sensory scores in
eight attributes, such as sweet, fruity, woody, roasted, medic-
inal, dusty, moldy and ink, were significantly different (p <
0.05) among samples. The sensory profiles of 14 samples

F m de-
s

espond to oxidizing compounds and the latter to redu
ompounds. One ml of soy sauce sample was placed in a
olume of vial and heated at 50◦C. One ml of headspa
ir was automatically injected into the e-nose by a syr
nd sensor responses were recorded for 120 s. The max
esponse points automatically recorded for each of 18 se
ere used as the e-nose response.

.5. Statistical analysis

Analysis of variance (ANOVA) and PCA were carried
y Senstools 3.1 (OP&P, Utrecht, The Netherlands).
nalysis was performed by Unscrambler ver.7.01 (CA
SA, Trondheim, Norway). The correlations between sc
f individual attributes and GC–MS profiles or e-nose
ponses were analyzed by PLS1 but PLS2 was applied
ustrating correlations between whole sensory, GC–MS
-nose data sets. All variables, such as GC–MS peak
ensor responses and scores of sensory attributes, wz-
ransformed so as to make each variable has a unit var
nd zero mean before applying PLS analyses in order t

ain unbiased contribution of each variable to the criter
. By applying PLS analysis toz-transformed data, impo

ance of peaks for each attribute could be compared qu
atively based on regression coefficients and loading we
or each predictor orX variable used in PLS models[17].
fter PLS analysis performed with the whole GC–MS d
0 GC–MS peaks that showed larger absolute magnitu

mportance, regardless of signs, were selected as influ
nes and the second PLS analysis was performed. In or
xamine the robustness of calculated PLS models, estim
ig. 3. Factor loadings and principal component scores extracted fro
criptive sensory data.
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Fig. 4. Purge and trap GC–MS profiles of soy sauce aroma. Numbered 98 peaks were used as predictor variables for PLS regression analysis.

were compared inFig. 2. A biplot, a scatter plot for scores
and factor loadings obtained from PCA, illustrates mutual
relationships between samples and attributes (Fig. 3). This
biplot suggests that samples may be classified into four or
five groups on the basis of aroma characteristics. As easily
assumed from only three attributes,sour, fermentedandfishy
locating in the right side, the uniqueness ofE is derived from
weakness in most attributes.

3.2. Sensory data vs. GC–MS data

More than 120 peaks were observed in purge and trap
GC–MS profiles but 98 peaks commonly found in all 14 sam-
ples were used as predictor variables,X, in the subsequent
PLS analysis (Fig. 4). As presented inTable 2, all contribut-
ing proportions,R2 ×100, calculated for every attribute based
on PLS models surpassed 76%. These higher values clearly
indicate that all attributes identified in soy sauce aroma have
strong correlations with headspace GC–MS profiles as al-
ready found in soy sauce aroma using linear multiple regres-
sion analysis[19,20]. It has already been shown in our previ-
ous works on aromas of seafood and fish that the predictability
could be improved by calculating a new PLS model using a
set of selected peaks that had shown higher contributions for
estimatingY [21,22]. Further, it could be much easier to ex-
a mical
c m a
s ting

peaks were chosen from 98 peaks by comparing importance
in a PLS model in order to obtain a more comprehensive
and higher predictive PLS model. AsTable 2clearly indi-
cates, the predictability for each attribute has been greatly
improved in the PLS model composed of 20 peaks selected
through the aforementioned step. As shown inFig. 5, close
relationships betweenalcoholicscores from sensory evalu-
ation and those estimated by the 20-peak PLS model were

Table 2
Contributing proportions (R2 × 100) in PLS models calculated from whole
GC–MS peaks, selected 20 peaks, and 18 gas sensors in electronic nose

Attribute R2 × 100

GC–MS Electronic nose 18 gas sensors

98 peaks 20 peaks

Sweet 87 97 9
Alcoholic 89 98 51
Fruity 90 97 17
Sour 82 96 12
Fermented 81 90 13
Woody 86 93 16
Roasted 90 96 2
Boiled bean 86 98 9
Fishy 90 91 52
Gargle 77 90 9
Medicinal 76 91 20
Rice bran 81 96 17
E
M
I

mine the relationships between each attribute and che
omponents, if the PLS model would be calculated fro
maller number of peaks. Therefore, 20 highly contribu
arthy 96 95 38
usty 78 94 22

nk 76 94 7
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Fig. 5. Relationships between sensory scores foralcoholicand scores esti-
mated based on the PLS model calculated from GC–MS profiles. Solid line:
observed scores vs. scores estimated by calibration model (�), dotted line:
observed scores vs. cross-validated scores (�). R2cal: contributing propor-
tion in calibrationmodel, R2val: contributing proportion in cross-validation.

indicated in both ordinary and cross-validated estimations.
Thus, the PLS model calculated foralcoholicusing highly
contributing 20 peaks was a robust one.

Fig. 6shows a scatter plot of factor loadings on 20 peaks
andalcoholic in the first and second PLS components. The
importance of each peak foralcoholiccan be quantitatively
compared on this plot as described below[23]. At first, draw
a line from the point ofalcoholicthrough the origin (0, 0) and
through to the other side from the origin. A perpendicular line
drawn from theith GC–MS peak on this line projects theith
peak point onto the line. The length of the projection orith
peak point to the origin (0, 0) is proportional to importance
of ith peak foralcoholic. For example the peak 16:isobutyl
alcohol should be more important than peak 19: 2-pentanol

F C–MS
p r-
p

Fig. 7. Changes in residual variance in relation to the number of components
constructing PLS models. The five-component PLS model is the best since
the residual variance attains smallest there.

because the length from origin to the peak16 point is much
longer than that from origin to the peak 19 point. That is,
in Fig. 6, peaks closely locating toalcoholic, such as 16:
isobutyl alcohol, 64: dihydro-3-methyl-2(3H)-furanone and
19: 2-pentanol are highly contributed toalcoholicbut peaks
in the opposite side, such as 56: 2-acetylfuran, 82: hexanoic
acid and 79: 3-methylvaleric acid, are contrarily contributing
or weakening thealcoholicnote. However, examining rela-
tionships between each attribute and chemical components,
their importance suggested by PLS analysis, is another re-
search subject and so detailed comments are refrained here.

The optimum number of PLS components to obtain the
most accurate prediction could be decided by comparing
residual variances obtained from cross-validation. AsFig. 7
shows, the lowest residual variance was attained at the five-
component PLS model butR2 (0.978) obtained from the two-
component PLS model was high enough as already shown in
Fig. 5. Further, if we consider the predictability and easiness
in the interpretation of PLS model, the two-component PLS
model may have some advantage over the five-component
PLS model because of its simple structure.

3.3. Sensory data vs. e-nose data

According toTable 2, contributing proportions calculated
f s sur-
p e
f ring
r six-
c e-
d s
o n
c this
b onses
h ents
( on
c ents
s ex-
t ding
p ssi-
fi /G,
S tive
ig. 6. Factor loadings of PLS components 1 and 2 on selected 20 G
eaks andalcoholic for calibratingalcoholicscores. See the text for inte
retation of this figure.
rom PLS models using e-nose responses as predictor
assed 50% only foralcoholic and fishy notes but thos

or all other 13 attributes were much smaller. Compa
esidual variances calculated from cross-validation, the
omponent PLS model withR2 = 0.877 was the best for pr
ictingalcoholic, however,R2 from the cross-validation wa
nly 0.508 (Fig. 8). It means that only a half of variatio
ontained inalcoholicscores could be explained even by
est PLS model. However, 100% variance in sensor resp
ad already been extracted in the first two PLS compon
Fig. 9). We may naturally wonder what kind of informati
ould be contained in the additional four PLS compon
ince the most of principal information has already been
racted into the first two PLS components. The factor loa
lot shown inFig. 9 indicates that 18 gas sensors are cla
ed into contrasting two groups, 5 sensors (SY/AA, SY
Y/gCTI, SY/Gh and SY/gCT) characterized with nega
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Fig. 8. Relationships between observed sensory scores foralcoholic and
scores estimated based on the six-component PLS model calculated from
e-nose responses. Solid line: observed vs. scores estimated from calibration
model composed of six PLS components (�), dotted line: observed vs. cross-
validated scores (�). R2cal: contributing proportion in calibrationmodel,
R2val: contributing proportion in cross-validation.

factor 1 loadings and other 13 sensors with positive factor
1 loadings. This clear classification may simply reflect two
types, n and p, of gas sensors installed in the e-nose but further
comments cannot be made because detailed information on
features in these sensors has not been supplied from the man-
ufacturer. Although nearly 100% variance has already been
extracted into the first two PLS components, predictability
of the model was unsatisfactory and not robust as the great
differences between calibrated and cross-validated scores in-
dicate (Fig. 10). Thus, at present, e-noses, regardless of using
any sensors currently available, may not be able to supply in-
formation relevant to sensory attributes in food aroma as Mor-
van et al.[13] have already reported using a MOS-MOSFET
gas sensor array.

Next, exactly opposite arrangement of sensors shown in
Fig. 9was obtained from PLS analysis forfishyand sensor re-
sponses. AsFig. 11shows, five sensors (SY/gCT, SY/gCTI,

F rs and
a

Fig. 10. Relationships between observed sensory scores foralcoholicand
scores estimated based on the two-component PLS model calculated from
e-nose responses. Solid line: observed vs. scores estimated from the cali-
bration model composed of two PLS components (�), dotted line: observed
vs. cross-validated scores (�). R2cal: contributing proportion in calibration
model, R2val: contributing proportion in cross-validation.

SY/Gh, SY/G and SY/AA) locate in the positive side but other
13 sensors are placed in the negative side in the factor loading
plot. Two contrasting classification shown inFigs. 9 and 11
may correspond to widely known fact that different groups
of aroma compounds are responsible foralcoholicandfishy
notes. Generally, alkyl amines cause thefishynote but theal-
coholicnote is usually derived from alcohols and aldehydes.

3.4. Whole sensory data vs. whole e-nose data

To examine overall relationships between whole attributes
and whole sensor responses, two data sets were analyzed by
PLS2.Fig. 12 shows a first and second factor loading plot
for attributes and sensors with sample scores superimposed.
As this plot indicates, as already found inFigs. 9 and 11, 18
sensors were classified into two groups each composed of 5

F rs and
fi

ig. 9. Factor loadings of PLS components 1 and 2 on 18 gas senso
lcoholic.
ig. 11. Factor loadings of PLS components 1 and 2 on 18 gas senso
shy.
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Fig. 12. Factor loadings of PLS components 1 and 2 on 15 sensory attributes
and 18 gas sensors.

SY sensors and other 13 sensors. Examining sample distri-
bution, G seems somewhat different from other soy sauce but
uniqueness of this sample has not been indicated in the PCA
plot obtained from sensory scores (Fig. 3). Although the first
PLS component account for 99% of variance contained in
sensor responses, the sensory related variance extracted was
only 11% due to the complicated mature of food aroma and
too simple specificity in sensor responses. Until now the total
number of aroma compounds identified in food has surpassed
7000[24] and most food aromas except for certain fresh veg-
etables and fruits are derived from complicated mixtures of
various aroma compounds[25].

3.5. GC–MS data vs. e-nose data

Relationships between whole e-nose responses and whole
GC–MS profiles were analyzed by PLS2.Fig. 13 shows a
first and second factor loading plot for 98 GC–MS peaks and
18 sensors with sample scores superimposed, where two sen
sor clusters, one composed of 5 SY sensors and another of
other 13 sensors, locate in the opposite sides and 98 GC–MS

F peaks
(

peaks are placed in between. The contributing proportion at-
tained to 93% (=89 + 4) by the first two PLS components
but this large proportion seems to be simply derived by two
sensor groups placed in the opposite sides. Further, only a
few GC–MS peaks seem to have significant correlation with
sensors. Although a large variation, 89%, was extracted in
the first PLS component, most variation seemed irrelevant to
sensory characteristics since 13 samples except for G were
simply arranged vertically. Thus, this 89% may simply reflect
variation contained in volatiles of soy sauce samples but not
closely related to sensory properties.

4. Conclusions

Fifteen attributes developed for describing soy sauce
aroma were useful to differentiate 14 brands of soy sauce
distributed in Japan. Each of 15 descriptive sensory attributes
could be well correlated to GC–MS profiles by PLS regres-
sion analysis. Calculating PLS models with 20 peaks highly
contributed for predicting each attribute has greatly improved
the predictability of models and interpretation of the mean-
ings implied in them. On the other hand, predictability of
e-nose responses for sensory attributes was unsatisfactory ex-
cept foralcoholicandfishy, due to poor response specificity
a rding
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s alled
i to two
g esults
i ficity
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ig. 13. Factor loadings of PLS components 1 and 2 on 98 GC–MS

�) and 18 gas sensors.
-

nd diversity in gas sensors installed in the e-nose. Acco
o the PLS loading plot, it was assumed that two groups of
ors having highly similar response properties are inst

n the e-nose because 18 gas sensors were classified in
roups both tightly clustered 5 and 13 sensors. These r

ndicated that novel gas sensors carrying higher speci
nd wider diversity should be created to construct a cap
nd reliable future e-nose to correlate its responses to se
ata.

eferences

[1] H. Stone, J. Sidel, S. Oliver, A. Woolsey, R.C. Singleton, F
Technol. 28 (11) (1974) 24.

[2] T. Aishima, Food Chem. Monthly 15 (1) (2002) 26 (in Japanes
[3] B.G.M. Vandeginste, D.L. Massart, L.M.C. Buydens, S. DeJ

P.J. Lewi, J. Smeyers-Verbekem, Handbook of Chemometrics
Qualimetrics: Part B, Elsevier, Amsterdam, 1998, p. 421.

[4] M.C. Meilgaard, G.V. Civille, B.T. Carr, Sensory Evaluation Te
niques, third ed., CRC Press, Boca Raton, FL, 1999, p. 161.

[5] M.M. Leahy, G. Reineccius, in: P. Schreier (Ed.), Analysis
Volatiles, DeGruiter, Berlin, 1984, p. 19.

[6] G. Reineccius, in: A.J. Taylor (Ed.), Flavour Technology, She
Academic Press, Shefield, 2002, p. 210.

[7] T. Aishima, Anal. Chim. Acta 243 (1991) 293.
[8] J.W. Gardner, H.V. Shurmer, T.T. Tan, Sens. Actuators B 6 (1992

71.
[9] T. Aishima, J. Agric. Food Chem. 39 (1991) 752.
10] H. Ulmer, J. Mitrovics, G. Noetzel, U. Weimer, W. Göpel, Sens
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