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Abstract

Sensory scores for 15 attributes identified in soy sauce aroma by quantitative descriptive analysis were correlated with purge and trap gas
chromatography—mass spectrometry (GC—-MS) profiles and electronic nose (e-nose) responses using partial least squares (PLS) regressio
analysis. Highly predictive PLS models were obtained for every attribute based on whole GC-MS profiles. However, the predictability has been
greatly improved in the models calculated from 20 selected peaks that showed higher contribution to each attribute in the first PLS analysis.
Contrarily, except foalcoholic andfishy notes, predictability of PLS models calculated from e-nose responses was poor. The correlation
between GC-MS profiles and e-nose responses was unsatisfactory due to high similarity in sensor responses.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction Then, scores given for each attribute by panel members are
averaged. Thus, the final form of data is expressed in a two
Infood research and development, quantitative descriptive dimensional matrixin attributesx n samples.
sensory analysis has widely been used notonly inindustry but ~ Although at present no method can accurately illustrate the
in academia since mid 1970E]. The basic principle of this ~ composition of sample aronf&]. At the first step of aroma
method is very similar to that of chromatographic analysis as analysis using GC or GC—mass spectrometry (GC-MS),
schematically shown ifrig. 1 [2]. This similarity gives ra- aroma components should be extracted and concentrated
tional bases for handling obtained sensory data with variousfrom food matrix since generally concentrations of most
statistical techniques that have widely been used in analyt-aroma components contained in food are lower than the de-
ical chemistry[3]. In the first step of this sensory method, tection threshold of detectors. Utilizing volatility and sol-
by using a well trained panel generally composed of 6-15 ubility in organic solvent, basic natures commonly shared
members, all sensory attributes present in food samples ardby aroma components, various extraction and concentration
identified through sniffing, tasting and intensive discussions methods have been developed and applied for analysis of
by panel membergl]. This step may correspond to identifi- food aroma using GC or GC-MS. Among them, simultane-
cation of peak components in gas or liquid chromatographic ous distillation-extraction (SDE), dynamic headspace anal-
analysis. In the second step, like quantitative gas chromato-ysis or purge and trap method using porous polymer, and
graphic (GC) or HPLC analysis, each panel member indi- solid-phase micro-extraction (SPME) may be the most pop-
vidually quantifies strengths of every attribute identified in ularly used methods in aroma analyi$.
samples in the preceding step using a category or line scale. Electric nose (e-nose), a newly coined name indicating an
attractive and versatile instrument, was initially developed
* Tel.: +81 48 649 6114 fax: +81 48 649 6114. by combining metal oxide semi-conductor gas sensors in or-
E-mail addressaishima@chemsensmetrix.com. der to mimic the human olfaction systdim8]. However, the
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i ! Table 1
) ! i Sensory attributes and results of ANOVA
Aroma and Taste Attributes of | |
Apple Juice A 1’ ' Attribute Description F P
| [ 1
AROMA W v lll Sweet Sweet note of heated sugar 1.87 0.04
sweet, apple sweet ) , /\’I ! Alcoholic Yeast fermentation note 1.70 0.07
saur, green, pear 1\ novice panel (S N Fruity Sweet fruity note 1.96 0.03
TASTE Sour Vinegar like note 1.60 0.09
sugar sweetthoney sweet well-trained Fermented Yogurt like note 0.96 0.49
sotlg,staesorfu:)%ear:w panel A? ? ﬁ 44 f% Woody Pine or cedar wood like odor 2.09 0.02
aftertaste O oo o Roasted Roasted cereals 1.88 0.04
555 35 § % 3 g §§ Boiled bean Steamed soybean 1.19 0.29
5L te3 2538 Fishy Rotten fresh water 1.69 0.07
223 225 5% ° Gargle lodine gargle 1.35 0.19
o - Medicinal Medicine like smell 4.22 0.00
& Rice bran Green and a little rancid 1.27 0.24
Dusty Dusty or earthy 2.06 0.02
Fig. 1. Schematic presentation for basic principle of descriptive sensory Moldy Odor of molded food 2.37 0.01
analysis exemplified by apple juice flajdy. Ink Smell of ink 2.15 0.01

detection specificity of such gas sensors for gases or aromabeans and wheat throuah the purely fermented process usin
compounds was rather poor in nature. Generally, output Sig_AspergiIIusfungi andZygcsaccrE)arorr?yceyeast P 9

nals from e-nose have been analyzed by multivariate pattern
recognition techniques, such as principal component analy-
sis (PCA) and linear discriminant analysis (LDA). Various 2.2. Sensory evaluation
successful results to classify the sample “aroma” have been
reported since early 19908-12] However, attempts to cor- Quantitative descriptive sensory analysis was applied for
relate e-nose responses to sensory attributes succeeded onfj¥aluating 14 soy sauce samples using a 15cm line scale by
parﬂy [13] but should undoubted|y be very important and a well-trained panel consisted of 12 members at the age of
interesting to develop a new application area of this instru- 30-50, 11 females and one male. They were selected based
ment. Further, if e-nose responses and GC-MS profiles couldon their sensitivity for detecting 2-phenylethyl alcohol, ska-
be statistically correlated each other, analytical results of e- tol, iso-valeric acid,y-undecalactone and cyclotene at their
nose might be interpreted on the basis of GC-MS data orthreshold levels (Daiichi-Yakuhin-Sangyo Co., Tokyo Japan)
chemical information. and ability to identify aroma properties of these compounds.
Since late 1970s, thanks to an emerging new discipline, Thirty ml of soy sauce was placed in a 180 ml volume of
chemometrics, in analytical chemistry, sophisticated multi- White china cup covered with a plastic petri dish and was
variate data analysis techniques have been applied for sets oferved to a panelist at a room temperature, caCz23rior
matrix data obtained from sensory and/or instrumental anal- to the quantitative descriptive analysis, 12 panelists had thor-
ysis of food samplefl4,15] Especially, pattern recognition ~ oughly discussed aroma properties of samples through three
techniques such as PCA, LDA and SIMCA (soft independent Preliminary sessions, each spent 2h, until all of them had
modeling of class analogy) are widely used ones. Further, par-2greed to use them as the attributes. Then, the quantitative de-
tial least squares (PLS) regression, currently the most power-scriptive analysis was performed using 15 sensory attributes
ful multivariate calibration technique, has been recognized aslisted in Table 1for all 14 samples randomly divided into
an indispensable regression technique among analysts workfour sessions, each composed of five, five and four samples.
ing in spectroscopy, chromatography and sensory sciencedn each session, samples were randomly presented for each
[16]. panel to avoid causing a so-called order effect. All samples
The purpose of this research is to compare the predictabil-were evaluated once. Every sample was presented to the panel
ity of GC—MS profiles and e-nose responses for quantitative With a three digit random number.
descriptive sensory data of soy sauce aroma by applying PLS

regression analysis. 2.3. GC-MS analysis

A 0.5ml portion of soy sauce sample placed in a 25ml

2. Materials and methods glass sample purger was heated &tG@or 5 min by a sample
heater and then purged with He gas at 40 ml/min for 60 min
2.1. Samples to isolate headspace volatiles, that were adsorbed on a 30 cm

x 3mm i.d. Tenax TA column in a Tekmar LSC2000 (Tek-

Fourteen deep-colored type soy sauce samples (A—N)mar Inc., Cincinnati, OH). It was then dry-purged for 30 min

were purchased from a local market in Tokyo. All soy sauce with He gas at 40 ml/min to remove water from the Tenax
samples were domestic products and produced from soy-column. The adsorbed compounds were thermally desorbed
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at 200°C for 10 min using He gas at 1 ml/min. Desorbed sweet

compounds were cryofocused at the capillary interface main- ink alcoholic
tained at—120°C with liquid N2 and then automatically

injected on the column by rapidly heating the interface to musty N fruity

220°C for 2 min.
An HP5971 mass spectrometer connected with an HP5980 earthy
gas chromatography (Agilent Technologies, Palo Alto, CA)
was used with a DB-WAX (60 nx 0.25 mm, film thickness:
0.25um, J&W Scientific Inc., Folsom, CA) fused silica cap-  rice bran
illary column. The oven temperature was elevated from 50
to 200°C at 3°C/min. The flow rate of He used for carrier
gas was 1.0 ml/min. GC-MS was operated with an ionization
voltage at 70eV and ion source temperature at°T30All
samples were analyzed once. Peak components were identi-
fied by matching their mass spectra with those in the Wiley fishy boiled bean
Library of MS spectra (Agilent Technologies) and based on _ , _
. . . . Fig. 2. Comparison of sensory profiles composed of average scores of 15
their retention indices. Areas of each peak integrated by an_ .« = e i soy sauce aroma.
attached computer were used as variables for statistical anal-
ysis.

sour

fermented

medicinal woody

gargle roasted

scores obtained from cross-validation were compared with
scores ordinarily estimated from PLS models. In the cross-
validation, a PLS modelis calculated after a group of samples
has been removed and sensory scores are estimated using the
AFOX 4000 e-nose from Alpha-MOS (Toulouse, France), p| g model obtained from the residual samples. Next, a new

W;]th 18 mlete}:jomde semlconguct_or: gas sensors, vgasf usedyoup of samples has been removed and a PLS model is cal-
The metal oxide sensors may be either n- or p-type, the former g, 104 sing the residual samples. This step is continued
respond to oxidizing compounds and the latter to reducing until all samples removed on¢es]

compounds. One ml of soy sauce sample was placedina 10 mi
volume of vial and heated at 5C. One ml of headspace

air was automatically injected into the e-nose by a syringe 3
and sensor responses were recorded for 120 s. The maximum
response points automatically recorded for each of 18 sensor
were used as the e-nose response.

2.4. E-nose analysis

. Results and discussion
3.1, Sensory analysis

Table 1shows 15 attributes identified by the panel for de-
scribing soy sauce aroma and the resulting sensory scores in
eight attributes, such as sweet, fruity, woody, roasted, medic-
inal, dusty, moldy and ink, were significantly differemt <€
0.05) among samples. The sensory profiles of 14 samples

2.5. Statistical analysis

Analysis of variance (ANOVA) and PCA were carried out
by Senstools 3.1 (OP&P, Utrecht, The Netherlands). PLS
analysis was performed by Unscrambler ver.7.01 (CAMO
ASA, Trondheim, Norway). The correlations between scores
of individual attributes and GC-MS profiles or e-nose re-
sponses were analyzed by PLS1 but PLS2 was applied to il-
lustrating correlations between whole sensory, GC-MS and
e-nose data sets. All variables, such as GC-MS peak areas,
sensor responses and scores of sensory attributes,zwere
transformed so as to make each variable has a unit variance
and zero mean before applying PLS analyses in order to ob-
tain unbiased contribution of each variable to the criterion,
Y. By applying PLS analysis ta-transformed data, impor-
tance of peaks for each attribute could be compared quanti-
tatively based on regression coefficients and loading weights
for each predictor oX variable used in PLS mode[47].

After PLS analysis performed with the whole GC-MS data,
20 GC-MS peaks that showed larger absolute magnitude of
importance, regardless of signs, were selected as influential
ones and the second PLS analysis was performed. In order t@:g. 3. Factor loadings and principal component scores extracted from de-
examine the robustness of calculated PLS models, estimatedcriptive sensory data.

)

PC2 (26%

PC1 (29%)
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Fig. 4. Purge and trap GC-MS profiles of soy sauce aroma. Numbered 98 peaks were used as predictor variables for PLS regression analysis.

were compared ifrig. 2. A biplot, a scatter plot for scores peaks were chosen from 98 peaks by comparing importance
and factor loadings obtained from PCA, illustrates mutual in a PLS model in order to obtain a more comprehensive
relationships between samples and attribukgg. (3). This and higher predictive PLS model. Agble 2clearly indi-
biplot suggests that samples may be classified into four or cates, the predictability for each attribute has been greatly
five groups on the basis of aroma characteristics. As easilyimproved in the PLS model composed of 20 peaks selected
assumed from only three attributesur, fermentedndfishy through the aforementioned step. As showikrig. 5, close
locating in the right side, the uniquenesdé derived from relationships betweealcoholic scores from sensory evalu-

weakness in most attributes. ation and those estimated by the 20-peak PLS model were
3.2. Sensory data vs. GC-MS data Table2 - -
Contributing proportionsR? x 100) in PLS models calculated from whole
) GC—-MS peaks, selected 20 peaks, and 18 gas sensors in electronic nose
More tharj 120 peaks were observed in purge and trap . ipoe R % 100
GC-MS profiles but 98 peaks commonly found in all 14 sam- _
ples were used as predictor variabl¥sjn the subsequent GC-MS Electronic nose 18 gas sensors
PLS analysisKig. 4). As presented iffable 2, all contribut- 98 peaks 20 peaks
ing proportionsR? x 100, calculated for every attribute based Sweet 87 97 9
on PLS models surpassed 76%. These higher values clearly\ICOhOIIC 89 98 51
indicate that all attributes identified in soy sauce aroma have :)“l:try 98% %:3 1172
strong correlations with headspace GC-MS profiles as al-roymented 81 90 13
ready found in soy sauce aroma using linear multiple regres-woody 86 93 16
sion analysi$19,20]. It has already been shown in our previ- Roasted 90 96 2
ous works on aromas of seafood and fish that the predictability Boiled bean 86 98 9
could be improved by calculating a new PLS model using a 'Shye 3(; Z%) 53
set of selected peaks that had shown higher contributions forMeoﬁcma| 76 o1 20
estimatingY [21,22] Further, it could be much easier to ex- Rice bran 81 96 17
amine the relationships between each attribute and chemicaFEarthy 96 95 38
components, if the PLS model would be calculated from a MUSW 772 ;’j 272

smaller number of peaks. Therefore, 20 highly contrlbutmg
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3.6

Rcal =0.978
R2?val =0.966

Estimated alcoholic score

2.4 2.6 2.8 3.0 3.2 3.4 3.6

alcoholic score

Fig. 5. Relationships between sensory scoresfosholicand scores esti-
mated based on the PLS model calculated from GC-MS profiles. Solid line:
observed scores vs. scores estimated by calibration mBleti¢tted line:
observed scores vs. cross-validated scdsR2cal: contributing propor-
tion in calibrationmodel, Rval: contributing proportion in cross-validation.

indicated in both ordinary and cross-validated estimations.
Thus, the PLS model calculated falcoholic using highly
contributing 20 peaks was a robust one.

Fig. 6shows a scatter plot of factor loadings on 20 peaks
andalcoholicin the first and second PLS components. The
importance of each peak fatcoholiccan be quantitatively
compared on this plot as described be[@8]. At first, draw
a line from the point oélcoholicthrough the origin (0, 0) and
through to the other side from the origin. A perpendicular line
drawn from théth GC-MS peak on this line projects ttth
peak point onto the line. The length of the projectioritar
peak point to the origin (0, 0) is proportional to importance
of ith peak foralcoholic For example the peak 1&oabutyl
alcohol should be more important than peak 19: 2-pentanol

4
—_
) 19: 2—pentanol .
ﬁ . alcoholic
2 17: 2-methy—2-butenal 2%: pnl:no

o . v 33: methylpyrazin€

% . 1—me*hox —2—"rog§1_nol -
iy : n—octal : meth) ine
= 15: n-hexanal
= 00 94: 4—gthylguaiaco) i
= 0. ) T pyrdine’ y
] 4: guaiacol 64: dihydro—3-methyl-2(3H)-furanope
X 56: 2-acetylf v 11:tolvene
-~ “H—-heptanol M
N -2 88: hgptanoic acid 43: unknown
z . v 42: 3—gthoxy—1-propanol

v v
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]
g -4 i
v
8
79: 3-methylvalefic acid
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Fig. 6. Factor loadings of PLS components 1 and 2 on selected 20 GC-MS
peaks andlcoholicfor calibratingalcoholic scores. See the text for inter-
pretation of this figure.
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Fig. 7. Changes inresidual variance in relation to the number of components
constructing PLS models. The five-component PLS model is the best since
the residual variance attains smallest there.

because the length from origin to the peak16 point is much
longer than that from origin to the peak 19 point. That is,
in Fig. 6, peaks closely locating talcoholic such as 16:
isobutyl alcohol, 64: dihydro-3-methyl-2(8-furanone and
19: 2-pentanol are highly contributed aécoholicbut peaks
in the opposite side, such as 56: 2-acetylfuran, 82: hexanoic
acid and 79: 3-methylvaleric acid, are contrarily contributing
or weakening thalcoholic note. However, examining rela-
tionships between each attribute and chemical components,
their importance suggested by PLS analysis, is another re-
search subject and so detailed comments are refrained here.
The optimum number of PLS components to obtain the
most accurate prediction could be decided by comparing
residual variances obtained from cross-validation Figg 7
shows, the lowest residual variance was attained at the five-
component PLS model b (0.978) obtained from the two-
component PLS model was high enough as already shown in
Fig. 5 Further, if we consider the predictability and easiness
in the interpretation of PLS model, the two-component PLS
model may have some advantage over the five-component
PLS model because of its simple structure.

3.3. Sensory data vs. e-nose data

According toTable 2 contributing proportions calculated
from PLS models using e-nose responses as predictors sur-
passed 50% only foalcoholic and fishy notes but those
for all other 13 attributes were much smaller. Comparing
residual variances calculated from cross-validation, the six-
component PLS model witR? = 0.877 was the best for pre-
dicting alcoholic, howeverR? from the cross-validation was
only 0.508 Fig. 8). It means that only a half of variation
contained iralcoholicscores could be explained even by this
best PLS model. However, 100% variance in sensor responses
had already been extracted in the first two PLS components
(Fig. 9. We may naturally wonder what kind of information
could be contained in the additional four PLS components
since the most of principal information has already been ex-
tracted into the first two PLS components. The factor loading
plot shown inFig. 9indicates that 18 gas sensors are classi-
fied into contrasting two groups, 5 sensors (SY/AA, SY/G,
SY/gCTI, SY/Gh and SY/gCT) characterized with negative
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Fig. 8. Relationships between observed sensory scoreaidoholic and Fig. 10. Relationships between observed sensory scoreddanolic and

scores estimated based on the six-component PLS model calculated fromycreg estimated based on the two-component PLS model calculated from
e-nose responses. Solid line: observed vs. scores estimated from calibration,_, 55 responses. Solid line: observed vs. scores estimated from the cali-
model composed of six PLS componerfi,(dotted line: observed vs. cross-  pration model composed of two PLS componel Hotted line: observed
validated scores({). Rcal: contributing proportion in calibratiomode, vs. cross-validated scoresl). R2cal: contributing proportion in calibration
Réval: contributing proportion in cross-validation. mode) R2val: contributing proportion in cross-validation.

factor 1 loadings and other 13 sensors with positive factor SY/Gh, SY/G and SY/AA) locate in the positive side but other

1 loadings. This clear classification may simply reflect two 13 sensors are placed in the negative side in the factor loading

types, nand p, of gas sensors installed in the e-nose but furtheplot. Two contrasting classification shownkigs. 9 and 11

comments cannot be made because detailed information ormay correspond to widely known fact that different groups

features in these sensors has not been supplied from the maref aroma compounds are responsibledtmoholicandfishy

ufacturer. Although nearly 100% variance has already beennotes. Generally, alkyl amines causefisaynote but theal-

extracted into the first two PLS components, predictability coholicnote is usually derived from alcohols and aldehydes.

of the model was unsatisfactory and not robust as the great

differences between calibrated and cross-validated scores in3.4. Whole sensory data vs. whole e-nose data

dicate fFig. 10. Thus, at present, e-noses, regardless of using

any sensors currently available, may not be able to supply in-  To examine overall relationships between whole attributes

formation relevantto sensory attributes in food aroma as Mor- and whole sensor responses, two data sets were analyzed by

van et al[13] have already reported using a MOS-MOSFET PLS2.Fig. 12shows a first and second factor loading plot

gas sensor array. for attributes and sensors with sample scores superimposed.
Next, exactly opposite arrangement of sensors shown inAs this plot indicates, as already foundrigs. 9 and 1118

Fig. 9was obtained from PLS analysis fishyand sensorre-  sensors were classified into two groups each composed of 5

sponses. Afig. 11shows, five sensors (SY/gCT, SY/gCTI,

1.5
8 ? fishy
- alcoholic @
9 >~ 1.0
- 6 SY/AA N
> M ;
S e
g4 sY/G ~ 5 SY/QCT
x Sé\\((/%:rr l % IS SY/gCTI
N2 v 2
= ﬁ% S 00 3 SY/Gh
S SY/gCT para g— ]
c v 2
T S SY/G
g 00 ) S SYILG
g a2 _s SY/AA
S _5 o
o~
7 SYLG
4 -1.0
-3 -2 -1 -0 1 2 3 -3 -2 -1 -0 A 2 3
PLS component 1 (X:90%, Y:40%) PLS component 1 (X:97%, Y:49%)

Fig. 9. Factor loadings of PLS components 1 and 2 on 18 gas sensors andrig. 11. Factor loadings of PLS components 1 and 2 on 18 gas sensors and
alcoholic fishy.
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15 peaks are placed in between. The contributing proportion at-
g 5 tained to 93% (=89 + 4) by the first two PLS components
> 10 oo but this large proportion seems to be simply derived by two
N 5 M cour G sensor groups placed in the opposite sides. Further, only a
X . SYLLE\wup}oas od few GC-MS peaks seem to have significant correlation with
% 0.0 e} @ sensors. Although a large variation, 89%, was extracted in
e W R fmigJ yﬁ the first PLS component, most variation seemed irrelevant to
é -5{ alcoholicg_!ﬁ g sensory characteristics since 13 samples except for G were
] '“"“‘”"K simply arranged vertically. Thus, this 89% may simply reflect
«-1.0 variation contained in volatiles of soy sauce samples but not
o s closely related to sensory properties.

-4 -2 0.0 2 4 .6 .8 1.0 1.2

PLS component 1 (X:99, Y: 11%)

) ) ] 4. Conclusions
Fig. 12. Factor loadings of PLS components 1 and 2 on 15 sensory attributes

and 18 gas sensors. . . L.
g Fifteen attributes developed for describing soy sauce

SY sensors and other 13 sensors. Examining sample distri-aroma were useful to differentiate 14 brands of soy sauce
bution' G seems somewhat different from other soy sauce butdiStribUtEd in Japan. Each of 15 descriptive sensory attributes
uniqueness of this sample has not been indicated in the PCAcould be well correlated to GC-MS profiles by PLS regres-
plot obtained from sensory scorddd. 3. Although the first ~ sion analysis. Calculating PLS models with 20 peaks highly
PLS component account for 99% of variance contained in contributed for predicting each attribute has greatly improved
sensor responses, the sensory related variance extracted wdge predictability of models and interpretation of the mean-
only 11% due to the complicated mature of food aroma and ings implied in them. On the other hand, predictability of
too simple specificity in sensor responses. Until now the total €-N0se responses for sensory attributes was unsatisfactory ex-
number of aroma compounds identified in food has surpassedcept foralcoholicandfishy, due to poor response specificity
7000[24] and most food aromas except for certain fresh veg- and diversity in gas sensors installed in the e-nose. According
etables and fruits are derived from complicated mixtures of tothe PLSloading plot, itwas assumed thattwo groups of sen-
various aroma compound5]. sors having highly similar response properties are installed
in the e-nose because 18 gas sensors were classified into two
groups both tightly clustered 5 and 13 sensors. These results
indicated that novel gas sensors carrying higher specificity
Relationships between whole e-nose responses and Who|@nd wider diversity should be created to construct a Capable
GC-MS profiles were analyzed by PLSAg. 13 shows a and reliable future e-nose to correlate its responses to sensory
first and second factor loading plot for 98 GC—MS peaks and data.
18 sensors with sample scores superimposed, where two sen-
sor clusters, one composed of 5 SY sensors and another of
other 13 sensors, locate in the opposite sides and 98 GC-MReferences
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